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Abstract: Communication requirements of Cholesky factorization of dense and sparse
symmetric, positive definite matrices are analyzed. The communication requirement is
characterized by the data traffic generated on multiprocessor systems with local and shared
memory. Lower bound proofs are given to show that when the load is uniformly distributed
the data traffic associated with factoring an n x n dense matrix using n®, a < 2, processors
is Q(n2*2/2). For an n x n sparse matrices representing a v/n x /n regular grid graph
the data traffic is shown to be Q(n'*2/2), a < 1.

Partitioning schemes that are variations of block assignment scheme are described and
it is shown that the data traffic generated by these schemes are asymptotically optimal.
The schemes allow efficient use of up to O(n?) processors in the dense case and up to O(n)
processors in the sparse case before the total data traffic reaches the maximum value of
O(n?) and O(n%/2), respectively.- It is shown that the block based partitioning schemes
allow a better utilization of the data accessed from shared memory and thus reduce the
data traffic than those based on column-wise wrap around assignment schemes. - . - .
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tract Nos. NAS1-18107, NAS1-18605, and by the Air Force Office of Scientific Research under C_ont.ract
No. AFOSR 88-0117 while the second author was in residence at the Institute for Computer Applications
in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.
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1. Introduction

Consider the problem of solving a system of linear equations
Ax =b

where 4 is an n x n symmetric, positive definite coefficient matrix, x is an n x 1 vector of
variables, and b is an n x 1 vector of constants. Applying the Cholesky decomposition to
A vields

A=1LIT

where L is lower triangular with positive diagonal elements {10]). From this factorization,
the solution to the system of equations is obtained by solving the triangular systems

Ly=b

and
L’'x=y.

Recently, efforts have been reported for efficiently parallelizing the various steps in comput-
ing the solution of the dense and sparse systems. Most of this work has concentrated on
developing algorithms that extract as much parallelism as possible on specific architectures
[14,18,19,1,5,3,9]. The main emphasis there is on distributing the computational load as
evenly among the processors as possible and little attention is paid towards the data traffic
complexity.

In this paper we are intercsted in the parallel Cholesky decomposition schemes with mini-
mum data traffic for factoring dense and sparse symmetric, positive definite matrices. The
model of computation assumed for this ,urrose is that of a multiprocessor system with two
level memory hierarchy such that each j . < ~ssor has local memory and all processors have
access to a common shared memory. Accessing any nonzero element in the shared memory
is assumed to generate a unit data traffic. No data traffic is generated in accessing the
local memory. The total number of shared memory accesses from the beginning to the end
of the algorithm is defined as the communication requirement or total data traffic of that
algorithm implemented on the multiprocessor system.

In [17] the communication requirement of the Gaussian elimination algorithm implemented
on three different architectures is analyzed. For a bus architecture wkere a data element
may be broadcast to all the processors in one step and counts as onc unit data traffic or
independent of the number of processors receiving the data, the data traffic complexity is

shown to be f2(n?). For a nearest neighbor ring network, where each transmission of a data 8
clement across a link of the ring counts as one unit data traffic, the data traffic complexity

is shown to be §(n? - p), where p is the number of processots or the ring. The data traffic :
complexity for a nearest ncighbor grid network is shown to be Q(n?,/p). In all the cases
it is assumed that no element is computed in more than one processor; i.e., recomputation
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is not permitted. By using a different proof technique than that given in [17], it is shown
here for the assumed model of computation that the data trafic complexity of the Cholesky
factorization scheme is (n?,/p). The proof for the lower bound holds even if recomputation
is allowed provided each processor is assigned at least n?/6p amount of work. Although we
do not prove it, our result holds for other variations of Gaussian elimination as well.

In {4]. a paralle]l sparsc factorization scheme is given for local memory multiprocessor sys-
tems. This scheme has a total data traffic of O(n'*®log, n) using n® processors. This result
is improved to O(n'**) in [7]. In this paper we present a factorization scheme that has a
total data trafic of O(n'**/?). Our main results and the organization of the paper is as
follows.

In the following scction, the data dependencies involved in the Cholesky factorization of a
dense matrix are discussed and a parallel assignment scheme is presented. It is shown that
the data traffic associated with that scheme is O(n? - v/P) when an n x n dense matrix is
factored using p processors. By giving a proof on the lower bound for the data traffic, in
Section 2.4 it is shown that under the condition of uniform load distribution the computation
time and data traffic complexities of the assignment scheme are asymptotically optimal. In
Section 3., the case of factoring sparse, symmetric, positive definite matrices is considered.
The sparse matrices considered here are restricted to only those matrices that represent the
graphs arising in finite difference and finite element applications. In Section 3.5, a block
based parallel factoring scheme for sparse matrices is presented. The data traffic in factoring
an n X 7 sparse matrix corresponding to a 2-dimensional regular grid graph is shown to be
O(n - \/p). In Section 3.6 a lower bound on the data traffic in factoring the sparse matrix
is shown to be Q(n - \/p). These results can be extended to other graphs that satisfy an
f(n)-scparator theorem [13]. Preliminary versions of the results given here appear in [15]
and [16].

For the sake of clarity, in the following discussion the dense matrix is assumed to be of size
m x m and the sparse matrix of size n x n.

2. Parallel factoring of dense symmetric, positive definite
matrices

The basic algebraic scheme considered here for factoring an m Xx m symmetric, positive
definite matrix A is the column version of the Cholesky decomposition method [10]. An
outline of this algorithm is given next and the data dependencies are discussed. Following
that a partitioning scheme with optimal data traffic is presented.

In the following discussion, values in row i refer to the values of the elements on and to the
left of the diagonal. Similarly, e; . (a.;) represemis all the elements in row ¢ (in column j)




of the lower triangular part of the matrix under consideration.

2.1 The Cholesky factorization

Let 4 = LLT; ;€ Aand I;; € L.

for j=1 until m do
begin
Initialize &;; = a;j, t=Jj,"--,m
for k=1 until j — 1 do
for i = j until m do
ij=li;—lik*ljn;
i = Vi
for k = j + 1 until m do
e = Ui/l s
end

In the above algorithm for clarity, the values of I; ; are shown separately from those of a; ;.
In practice I; ; may overwrite a, ;.

Clearly, in the Cholesky factorization scheme outlined above, computing the elements in
a column j of L requires values of the elements in columns 1 through j — 1 of L and the
values of the off-diagonal elements in j are used for computations of elements in columns
J + 1 through m of L. Specifically, computing an element I;; in L requires all the values
from the set,

Acj={ly |1<5 <iYUlliz 1< 7 < }ufans)

Moreover, the steps of the innermost loop, where a product of two elements of L is sub-
tracted from a;;, may be performed in any order. Once [;; is computed, it is used in the
compntation of every element in the set,

Aij={liy|i<i <i}u{lypili<i <m}.

Again the element I; ; may be used in any order in the computations of the elements in the
set A,'”,'.




2.2 A partitioning scheme for Cholesky factorization

Without loss of gencrality, assume that p = (r? + r)/2 where r is an integer. The lower
triangular part of the matrix A is divided into p partitions by taking r vertical and r
horizontal sections each of size 8, where s = m/r. All except r of the resulting p partitions
are square blocks of size 3 x 8. The remaining r partitions which lic on the diagonal of the
matrix are 8 x s triangular blocks. Each of the partitions is assigned to a single processor.
Initially, each processor reads the data for its partition from shared memory into its local
memory. The computations proceed in parallel according to the column version Cholesky
algorithm as follows. The r processors in charge of the partitions containing the left most
& x g blocks of the matrix commence the computations of their part of the factorization.
As soon as an element of the factor is computed, it is written into shared memory for access
by other processors. As the necessary data becomes available, the remaining processors
initiate computations on the blocks assigned to them. This is continued uniil the entire
factor is computed and written into the shared memory. This partitioning and factorization
scheme for dense symmetric, positive definite matrices is referred to as the block orsented
column Choleskyfactorization scheme or simply as the BLOCC scheme.

(1-1)°s+l |
i.s :

(3-1) s+l |
s 3

(1-1)°s+l i.s

Figure 1: The data traffic associated with block I

2.3 Data traffic complexity of the BLOCC scheme

First consider the data traffic associated with computing the elements in a generic square
block 7 in the factor L shown in Figure 1. In that figure, the darkened area represents the
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data elements that are required for the computations in block I. Let block I be buunded by
the columns (f —1)s+ 1 and i -5, and by the rows (j —1)s+ 1 and j-#s where 1 <i <rand
1 < j < r. The following lemma provides bounds for the communication cost of block 7.

Lemma 1 A total data traffic of (2i—1/2)-82+3/2 is necessary and sufficient for computing
the elements in the square block I; it i3 the same for all square blocks bounded by the columns
(t—1)s+ 1 and i-s. The data traffic associated wrth a s x s triangular diagonal block
bounded by the columns (i — 1)s+ 1 andi-s, ts (i — 1/2) - 52 + 8/2.

Proof: See [15]. |
Using these results, a bound on the total data traffic is obtained, as shown next.

Theorem 1 The total data traffic assocsated with the BLOCC scheme for factoring an
m X m dense symmetric, positive definite matriz using p processors s O(mz\/ﬁ).

Proof: The total data traffic associated with all the blocks bounded by columns (i —1)s+1
and i-s, 1 <i<r,is given by,

(r — #) x (data traffic associated with a square block)

+ (data traffic associated with a triangular block bounded by the given columns).

From Lemma 1 and the fact that there are r such column partitions, we get the total data
traffic involved in factoring the m x m dense matrix using the BLOCC scheme as:

r

3 ((r = i)((2i = 1/2) - 87 + 8/2) + (i = 1/2) - 6> + 5/2)).
1=1
Ignoring the lower order terms, the total data traffic is

r

= Z(Zr-i—%?)-s2

=1

< r?.s?/3.

Since p = (r2 + 7)/2 and s = m/r, the total data traffic is O(m?/p). |

2.4 A lower bound on the data traffic complexity

Theorem i givus an upper bound on the data traffic associated with factoring the m x m

matrix using the BLOCC assignment scheme. In the next ihcorem a lower bound on the
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data traffic in factoring the dense symmetric, positive definite matrix is established. Before
giving the proof, we again consider the data dependencies involved in computing an element
of the factor. Consider the computations at any element g¢;; as shown in Figure 2. To
compute the corresponding element [; ;, values at all the elements in row j and the values
of elements in column 1 through j of row ¢ are needed. Thus, if a,; is an off diagonal
element then 25 values are necded for the computations and if it is a diagonal element (i.e.,
i = j) then j values are required. There are three observations to make regarding these
computations as follows:

1. The values at all the elements in any row i are needed to complete the computations
corresponding to the diagonal element a,;; no other values are needed for computing [, ;.
Moreover, no other element in the factor can be computed by knowing only the values in
row 1.

i. If ¢ and j are any two rows such that i > j then the values of the elements in these two
rows are used to complete computations at exactly one off-diagonal element a; ;. Values
from no other row are needed to complete the computations at that element.

ili. For the computations at a subset of elements spread over k, rows and k. columns, values
from at least max(k,, k.) rows are needed.

Figure 2: Data dependencies for the computations at a;; and at ele-
ments in subset S

The last observation follows from the fact that the computations require v»'ves from #F,
rows as well as from the k. rows that correspond to the k. columns. However, some of the
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k, rows and the k. rows may overlap. In addition, note that if j/ is the leftmost of the k.,
columns then at least all the values in columns 1 through j' on max(k,, k.) rows are required
in the computation of the elements in the subset under consideration (see Figure 2).

The above observations and the result established in the following lemma are used to get a
lower bound on the data traffic in computing the Cholesky factor.

Lemma 2 Let 117 be the amount of computational work whach s to be distributed uniformly
among p processors and let o be any constant less than one. For any subsct of this compu-
tatwon conststing of 1V/2 amount of work, there arc at least (1 — @) - p/(2 = ) processors
cach assigned o - 1V /2p or more work from that subset.

Proof: The work is uniformly distributed among p processors and hence each processor
is assigned 117/p amount of work. Now let § be a subset consisting of 177/2 amount of
computational work. All p processors may be assigned some portion of work from §. Let
w, be the computational work from S assigned to processor p;, where 0 < w; < 1W/p.
Therefore,

4 w o ¥

=1 l 2
and 1V/2p is the average work from S performed by each processor. Thus, there is at least
one processor that is assigned 17°/2p or more work from S. Let a be a constant less than
one and suppose that z processors are assigned at least a - 17" /2p amonurnt of work from S.
Each of the r processors may be assigned at most 17"/p work from S. Now therc are p— z

processors that compute less than a - 17 /2p amount of work from S. Therefore,

5% + a- W ( ) > 5%
» T 2p p—-z)> .
Solving the inequality for z we get,
l1-oa
> - p.
r= Y P

Thus, there are at least (1 — a) - p/(2 — a) processors each computing a - 1 /2p or more
amount of work from §. ]

In the {ollowing theorem a bound on the data traffic associated with computing the Cholesky
factor of an m xm matrix is established. Note that the result holds under stronger conditions
than required by the model of computation assumed here.

Theorem 2 Let A be a dense, m X m symmetric positive definite matriz that resides in the
common memory. If the computational work ss uniformly distributed among p processors,
then the data traffic involved in computing the Cholesky factor of A is Q(m?-,/p). Forp > 6,
the data traffic is Q(m? - \/p) even if the snitial values of matriz A are tn the processor local
memory before the computation begins.




Figure 3: Data traffic associated with factoring of elements in region
FGH

Proof: Suppose that matrix A is initially stored in the common memory. The initial value
of each element is fetched at least once by the processors for computing the factor. Thus,
at least m?/2 amount of data traffic is associated with the Cholesky factorization. Hence
when the number of processors is a constant, there is nothing to prove.

In the following it is proved that even if the matrix A is distributed initially among the
processors according to their work assignment, the data traffic is (m? - \/p) when the
number of processors is greater than 16(a + 4/a — 4)/3 for any constant a less than one.
Since there exists an a less than one such that 16(a +t/a —4)/3 is less than six, the proven
result holds for all p > 6. Consider the computations corresponding to the elements in the
set S = {a,;|4,§ > m/2}. In Figure 3 the region FGH denotes this set of elements. The
total computational work in factoring the m x m matrix is m%/6 + m?/2 + m/3 and that
corresponding to the elements in set S is m3/12+ m?/4 + m/6. Thus, the amount of work
associated with S is exactly half of the total wozk. If a is a constant less than one, then
from Lemma 2, there are at least (1 — a) - p/(2 — @) processors each computing at least
a - m3/12p amount of work from the region FGH.

Let II be the set of processors each with at least a-m3/12p amount of work from the
region FGH and let p, € II. Now the computational work associated with any element in
FGH is at most m (wotk corresponding to element a,, ., ). Therefore at least a - m?/12p
elements in the region FGH are assigned to processor p;. Let z be the number of rows
on which the elements assigned to processor p; lie. This implies that thcre are at least
f(a-m?)/(12-p-z)] columns on which the elements assigned to p; lie. Therefore, from the




Observation (iii) above, data from at least wax(z, [(a - m?)/(12 - p - 2)]) number of rows in
the region DEGE are required for completing the computations from region FGH assigned
to processor p,. Withont loss of generality, assume that the quantity 12 p-z divides a - m?
evenly. Now, the quantity max(z, (o - m?)/(12 - p- 7)) is minimum when r = /o - m//12).
Thus. the computations in processor p; require at least all the values of the elements on
the o - m//12p rows in region DFGE. In region DFGE cach row has m/2 elements and
thus the values of at least /a -m?/(4.,/3p) clements from the region DFGE are needed

in processor p, {or performing computations in the region FGH.

Now processor p, may also be assigned some work from the region DFGE in addition to that
in FGH. Hence to complete the proof, it is necessary to show that of the /o - m?/(4 - /3p)
elements needed by processor p; at least ¢ - mz/\/f elements are not available locally, where
¢ 1s a constant less than one. In that case the data traffic associated with processor p, is
at least ¢-m?/,/p and since there are at least (1 — a)-p/(2 — a) such processors, the total
data traffic in computing the Cholesky factor of an m x m dense matrix is (m? - V). We
complete the proof by showing in the following that p; accesses at least ¢ - m?/,/p non-local
elements from region DFGE for completing the computations in the region FGH.

Processor p, is assigned at least a - m®/12p amount of work from the region FGH. Since
each processor is assigned m?/6p amount of work (the uniform lnad distribution condition),
7. performs at most (2 — a) - m3/12p amount of work in the region DFGE. The data traffic
associated with precessor p; in completing the work in the region FGH is a minimum
when all the elements from region DFGE assigned to p; lie on the Ja - m//12p rows.
Furthermore, to reduce the data traffic, as many elements on these rows as possible should
be assigned to processor p;. Now the computational work cortesponding to any element
a,; 1s J; that is the work associated with an element on the leftmost column of the matrix
is the smallest and it incicases for elements onr any row from left to right. Therefore the
data traffic associated with p; is a minimum when it is also assigned the computational
work corresponding to the elements in the leftmost columns on the chosen rows of region
DFGE. Let k be the number of the leftmost columns on which the the elements from region
DFGE that are assigned to p; lie. The shaded region shown in Figure 3 corresponds to the
elements which minimize the data traffic for processor p;. Since processor p; performs at
most (2 — a) - m*/12p amount of work in DFGE, the condition on k is given by,

Vam o (2-a) -m?
—_-_—— < — e —
V12p 2 i< 12p

=1

pel \/1 L42-0) m 1

~ 2 va o V3p 2
It can be verified that there is a constant § greater than one, such that if p is greater
than 16(a — 4 + 4/a)/3, then the right hand side of the above inequality is at most
m /23 for all values of m. This gives a bound on k. Therefore work corresponding to
at most (\/a -m?)/(45 - /3p) elements in the region DFGE may be assigned to processor
p; which will minimize its data traffic for the computation in the region FGH. Hence of
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the (o -m?)/(2-/12p) elements necded by processor p; for completing the computation
in the region FGH. at least (1 — 1/3) - /o - m?/(4,/3p) elements are not available locally.
Thus, if the number of processors, p. is greater than 16(a — 4 + 4/«@)/3 for any a less than
one. then the data traffic associated with processor p; is at least ¢-m?/,/p for some con-
stant ¢ less than one. Since there are at lcast (1 — a)-p/(2 — a) such processors, the result
follows, i

2.5 Remarks on the BLOCC Scheme

Assuming that each step of the innermost loop in the Cholesky decomposition costs one
computational time unit and ignoring the costs associated with other steps, the sequential
computation time for factorirg the m x m matrix 4 is m®/6 + O(m?). The BLOCC scheme
described above has a computation time of m®/2p + O(m?/p), where p is the number of
processors used. As shown in Theorem 1 the associated data traffic is less than \/Z_-mz-\/i/&
Thus, the time and the data traffic complexities of the BLOCC scheme are optimum in an
order of magnitude sense. However, the computational load in the BLOCC assignment
scheme is not perfectly balanced. The processors that compute elements in the partitions
that are towards the left side of the matrix L finish computation earlier than those that are
on the right. This balance may be improved in several different ways, but at the cost of
increasing the data traffic. In one such scheme the columns of the matrix are assigned to
each processor in a wrap around fashion; that is, columns i,p+14,...,m — p+{ are assigned
to processor 1. All the elements on any column of L are computed by a single processor.
Let this assignment scheme be referred to as the wrap around assignment scheme. In this
scheme the computation is distributed more evenly among the processors than that in the
BLOCC scheme. The computation time is reduced to m3/6p + O(m?), provided m is at
least p(p + 3)/2. However the data traffic associated with this scheme is m? - p/2. which
is suboptimal. In [11] and {2] the wrap around assignment scheme is recommended as
a preferred method for computing the factor on a multiprocessor system because of its
good load balancing propertics. Their analysis does not take into account the cost of the
associated data traffic, which must be taken into account for reducing the overall execution
time.

“» Parallel factoring of sparse, symmetric positive definite
matrices

In this section a partitioning and assignment scheme is presented that computes the factors
of an n x n matrix, associated with a 2-d regular grid graph, using n°, @ < 1, processors
with a total data traffic of O(n'*2/?). Then it is shown that the data traffic in factoring the
matrix is (n'*°/?) when the load is distributed uniformly among n® processors, a < 1.
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It is also shown that in any scheme that requires »n® processors, a > 1, the data traffic is
O(n*1?).

For factoring a sparse matrix efficiently proper ordering of the matrix is essential. Ordering
of the matrix to be factored also determines the data dependencies and hence the data traffic
associated with any partitioning and assignment scheme. For matrices associated with
regular grid graphs, nested dissection is a well known ordering scheme [6]. In the following
a few basics of this ordering scheme are briefly described and some notation is introduced
that is necessary for the analysis presented later. In the following it s assumed that the
reader is familiar with the clementary concepts underlying the nested dissection algorithms,
and the terms such as elimination order and the fill associated with the elimination process.
It is also assumed that the rcader is familiar with the basic graph theory concepts related to
matrix representations of systems of equations, in particular, the notion of vertices, edges,
separators, subgraphs of a graph, and the correspondence between the vertices and the
rows and columns of the matrix, between the edges and ard the non-zero elements, and the
added edges and the fill-in during the factorization of the matrix. For details see [12] and
(6] and the references therein.

3.1 Nested dissection method as applied to 2-d grid graphs

A nested dissection method may be viewed as a divide-and-conquer algorithm on an undi-
rected graph. It relies on finding a small set of vertices, called the separator set, in the graph
such that the removal of these vertices divides the graph approximately in half. Informally,
the nested dissection method orders the vertices of the graphs as follows. The vertices in
the separator set are ordered last. Then the vertices in the subgraphs obtained from the
original graph by removing the separator are ordered recursively. In [12] a nested dissection
algorithm is given for ordering the vertices of any graph G such that G and all subgraphs
of G satisfy a \/n-separator theorem. The ordering produced by this algorithm guarantees
a O(nlogn) fill and O(n3/2) sequential operation count for a system corresponding to an
n-vertex graph G. In (8] a nested dissection algorithm is given for ordering the vertices of
a graph G that has a \/n-separator decomposition.* For a detailed treatment of the nested
dissection methods and for the relevant practical applications see [6].

For the sake of simplicity and clarity, here only the systems corresponding to /n x /n
regular grid graphs are analyzed. However, the techniques developed for analyzing data
traffic complexities are applicable to other systems where the nested dissection method can
be used to give a “good” ordering. In the following, the nested dissection method used
for ordering the vertices in a /n x +/n regular grid graph is briefly described. In the
discussion, the grid graph is sometimes simply referred to as the grid and a subgraph of the
grid graphs is referred to as a subgrid. For the rest of the discussion, it is also assumed that

*A graph G is said tn have a /n-separator decomposition for constants @ < 1 and § > 0 if G has a
V/n-separator C and every connected component of G'— C has a \/n-separator decomposition.

11
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Figure 4: A 7 x 7 grid with nested dissection ordering

the vertices of the grid are connected according to a 9-point stencil, unless otherwise stated.
Let V be the set of vertices of a /n x /n regular grid graph. Without loss of generality,
assume that /n = 2! — 1 for some integer I. Let Sy be the set of 2 — 1 vertices on a vertical
mesh line, the removal of which partitions V into two subgrids, ¥} and V3 such that the
vertices of both the subgrids are arranged in a (2' —1) x (2'~! — 1) mesh. The vertices of
So are numbered from n — \/n + 1 to n in any order. Suppose that V] is the left subgrid
and V5 is the right subgrid. Let S; be the set of vertices on a horizontal mesh line that
divides 17 into two equal parts each containing (2'~! — 1)? vertices that are arranged along
a (2'"1-1) x (27! —1) square mesh. Similazly, let S; be the set of vertices from V, which,
when removed, produce two equal halves from 3. Both Sy and S3 contain 2!-1 _ 1 vertices.
Let the vertices in S; be numbered from n — 2y/n + 2 to n ~ 3/n/2 + 1/2 and those in S,
be numbered from n — 3,/n/2 + 3/2 to n — \/n. Thus, the removal from V" of the vertices
in the sct S,US, US, partitions V into four (/n —1)/2 x (y/n —1)/2 subgrids. The
separator set SolJS; U S7 is referred to as the “+”-separator for the grid corresponding to
V7. The middle vertical part of the “+”-separator is referred to as the vertscal sub-separator
and each of the two horizontal halves of the “4”-separator is referred to as the horizontal
sub-separator. All the vertices of the four subgrids are numbered by recursively identifying
and ordering the vertices on the “+”-separators of the subgrids induced by the vertices
ordered so far. The recursion stops when a subgrid has only one vertex on it. For any
“47-separator, there is a vertical sub-separator and two horizontal sub-separators. With
the above described ordering scheme, for any given “+”-scparator, the vertices on the two
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horizontal sub-separators are given numbers that are smaller than those assigned to the
vertices on the corresponding vertical sub-separator. Thus, we say that the vertices on
a horizontal sub-scparator are ordered ahead of the vertices on the corresponding vertical
sub-separator or that the vertices on the vertical sub-separator are ordered after those on
the horizontal sub-separators. An example of ordering the vertices in a 7 x 7 grid is shown
in Figure 4. Observe that the grid is recursively partitioned into four subgrids by a set of

Y3

vertices that form a “4+7-separator.

To label the subgrids and the separators of the grid graph, we use the notation given in
[7]. Each subgraph and the separator that induces the subgraph are given a level number
depending on the recursion level of the nested dissection on which the subgraph is ordered.
Under this scheme the original grid is called a level-0 (sub)grid. The four subgrids of size
(vVn —1)/2 x (y/n —1)/2 are the level-1 subgrids. The “4”-separator that partitions the
level-0 grid into the four level-1 subgrids is called the level-1 “4”-separator or simply as the
level-1 separator. Thus, if n is equal to (2! ~ 1)?, there are I levels of subgrids numbered 0
through I — 1 and I — 1 levels of separators, numbered 1 through I — 1.

In the following it is assumed that the matrix to be factored is ordered using the nested
dissection scheme and that the symbolic factorization step is already completed.

3.2 Cholesky factorization scheme revisited

Consider the Cholesky factorization scheme described in Section 2.1 for factoring a sparse
symmetric, pousitive definite matrix.

Clearly, the main difference between factoring a sparse and a dense matrix using the
Cholesky factorization scheme is that in the former case there is no need to modify col-
umn j by all columns to the left of it. Specifically, column j is modified only by columns
k for which l;, # 0. Moreover, if column k modifies column j, only the nonzero elements
of column k need to be fetched. Exactly which elements are needed is formalized later. Ir
Figure 5(a), the zero-nonzero structure of L, corresponding to the vertices of the separators
on the first two levels, is shown schematically. The shaded areas represent the nonzeros.
The corresponding grid is shown in Figure 5(b). It is clear from the figure that only certain
values from certain columns are necded for computing an element of the factor.

Another important difference is that, because of the ordering applied, several columns may
be computed simultaneously. Asstated earlier, column ¢ and row j of the matrix corresponds
to a vertex v; in the elimination graph and the factoring of the matrix corresponds to the
climination of the vertices. Thus, all the vertices on the level /-1 subgrids may be eliminated
simultaneously followed by those on the level I — 2 and so on. This observation is useful in
extracting parallelism in the factorization step.
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Figure 5: Structure of L

3.3 The worst case data traffic complexity

In this section a bound on the worst case data traffic complexity for factoring the matrix A
is established. Clearly, the communication requirement is the worst when the use of local
memory is not allowed. Thus, an apper bound on the worst case data traffic is obtained
by assuming that the values of all the elements of the lower triangular part of matrix
A and those of L, as well as any intermediate results, are stored in the shared memory.
Suppose also that any number of processors are allowed to participate in computing a
nonzero element of the factor provided that no computation is repeated. Consider the
computations associated with a nonzero element I; ; € L. Recall that in computing I; ;, first
a;j— 2-,";11 li x-1j x is evaluated and then the resulting value is divided by I; ;. Thus, for each
maultiplication, there is one subtraction operation, at most one division and three memory
refcrences and a constant overhead such as index computation. Therefore, in the worst case,
each multiplication operation in the Cholesky factorization is associated with a constant
amount of data traffic. The following theorem gives a bound on the worst case total data
traffic. In the proof of the theorem, the result given in Theorem 8.1.8 of [6] is assumed.
That theorem states that the number of operations required tc factor a matrix associated
with an n-vertex 2-D grid ordered by nested dissection is given by 829n%/2/84 4+ O(n-log n).
Although the following result is obvious, it is useful because it is independent of the number
of processors used and it gives the worst case bound on the data traffic even for the models
of computation that are more restrictive.
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Theorem 3 The worst case data traffic assoctated with factoring the matriz A 1s O(n3/2).

Proof: Associated with each multiplication operation in the factorization there are at most
a constant number of memory references. Suppose that k memory references are involved
per multiplication. Thus, the total data traffic is

< k - number of multiplication operations.

Now, the number of multiplication operations associated with factoring matrix A is O(n3/2)
[6]. Hence, the worst case total data traffic is O(n?/?). ]

Note that the above theorem is applicable to all the graphs for which a /n-separator
theorem holds.

3.4 Data dependencies for the sparse Cholesky factorization

The worst case bound on the data traffic established in Theorem 3 can be improved for the
model of architecture assumed in the case of the dense matrices. In that model, no element
is fetched more than once from the shared memory and hence the values of the elements used
in more than one operation are stored in the local memory associated with the processor.
To maximize the potential of such a model, it is necessary to clearly understand the data
dependencies involved. The vertices of the grid are ordered using the recursive nested
dissection scheme. Hence it is sufficient to investigate the data dependencies involved in
computing the elements of L in the columus corresponding to the vertices in a generic
“+”-separator. This is accomplished in the next two lemmas.

Let 77 = {k|lk < j and Lix #0,l;x € L}; ie., 1],’ is the set of all columns of the factor L to
the left of the column j + 1 such that the elements in row ¢ of these columns are nonzero.
Let f)f'k = Ufz,' 1){; ie., ﬁ;’,k is the set of all the columns to left of column j + 1 such that on
each of these columns there is a nonzero element in at least one of the s through k rows of
the factor. Let I represent any m-vertex sub-separator. It is assumed that all the vertices
in any sub-scparator are ordered consecutively. Let low(I') and high(T) be the indices of
the lowest and the highest ordered vertices, respectively, or the sub-separator I'. Note that
high(T) — low(T') + 1 = m. In Figure 6, a sub-separator I' is shown. This sub-separator
separates the vertices in regions Ry and R. The diagonal and off-diagonal non-zero blocks
associated with this sub-separator are shown in Figure 7.

The following lemma establishes some basic sub-separator related properties that are useful
in analyzing the communication requirements.

Lemma 3 Let T be any m-verter sub-separator. (i) Corresponding to the vertices of I' there
is a dense m x m lriangular diagonal block in the Cholesky factor. (ii) In the factor L, the
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Figure 6: Sub-separator I with four surrounding sub-separators

columns low(T') through high(T') contain at most four off-diagonal rectangular blocks with
nonzero elements. Each of these blocks s of size at most (c; - m + c3) X m where ¢y <2
and c; < 3 are positive inleger constants. Any nonzero element in these columns s esther
tn one of these four blocks or in the diagonal triaagular block.

Proof: The first part of the lemma is obvious. In Figure 6, the sub-separator I' separates
the vertices in regions R, and R,. Since the vertices in these two regions are ordered ahead
of those of T, the fill due to the elimination of vertices in regions R, and R; ensures a dense
m x m triangular diagonal block bounded by columns low(T') and high(T') as shown in
Figure 7.

To prove the second part of the lemma, again consider Figure 6. In that figure, the thickness
of the lines qualitatively indicates the separator levels in the nested dissection ordering. Let
T,, I's, T3, and T be the four partial sub-separators that surround the sub-separator I.
Because of the nature of the nested dissection ordering, the vertices of I' are “connected” to
only those higher ordered vertices that lie on I'y, I'2, I's, and T'y and to no other vertices.!
Thus, all the nonzeros on columns low(I') through kigh(T) in rows below high(T') are
confined to only the rows corresponding to the vertices on Iy, I'y, I's, and I'. Furthermore,

'Vertex « is said to be “connected” to vertex v if there exists a path [w,w;,¥3,...,4;,v] of length one
or more in the grid graph such that sndez(x,) < min{index(n),index(v)), for 1 < r < k; in such a case,
li; € L is & non-zero, where i = index(u),j = indez(v).
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each vertex in T' is “connected” to every vertex on these four partial sub-separators and
hence the four rectangular blocks are dense. This is shown schematically in Figure 7. It
can be verified that if I' is a horizontal m-vertex sub-separator, then the surrounding box of
vertices is of dimension (2m 4 3) x (m+2). Therefore there are two rectangular off-diagonal
dense blocks of dimension at most (2m + 3) x m and the other two of dimension at most
(m+2) x m. Similarly, if T is a vertical m-vertex sub-separator, there are four off-diagonal
rectangular blocks of dimension at most (m 4 2) x m in the factor. If T is not surrounded
on all four sides then some of these blocks will be missing. 1

Figure 7: Off-diagonal blocks with nonzeros corresponding to
sub-separator T’

From the above lemma it is clear that, in computing the nonzero elements in the columns
corresponding to the vertices on a sub-separator, only the data dependencies of the elements
in the four rectanguia: blocks and the diagonal triangular block need be considered. This
is accomplished in the rollowing lemma where a bound is derived on the amount of data
required in computing the nonzero elements lying on a given row and on one of the five
blocks. The lemma shows that the number of nonzero elements in any row i of the factor
L is less than c - m where ¢ is an integer constant and m is the size of {\ic sub-separator
to which the vertex corresponding to row i belongs. It is then shown that, for any row i,
the computations at all the elements l;; € L, low(T') < j < high(T), for some m-vertex
sub-separator T, require a total of less than ¢ - m nonzecro elements from that row. Note
that this count is independent of the sub-separator to which the vertex corresponding to
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row ¢ belungs. Thus, the computations at all the elements in a row of any of the five blocks
specified in Lemma 3 require only ¢ - m elements from that row, irrespective of the relative
location of the off-diagonal blocks in the factor.

Lemma 4 Let T' be any m-verter sub-separator. The nonzero elements from row i, 1 >
low(T'), required sn completing the computations of all elements I; ; € L such that low(T') <
J < high(T), are those elements in row t on the columns in the set given by, 1‘71':3?]“) ),".gh(r) N n?'gh(l ),

For all i greater than or equal to low(T), |lﬁ{‘:j?1(‘];)fxigh(l‘)n n?iyh(r)n 1s at most c-m for some

constant c.

Proof: Any nonzero clement I; ; € L, i > low(l') and low(T') < j < high(T), is in one of the r
five blocks specified in Lemma 3. Hence, to prove the result of this lemma, only the rows
that intersect one of these blocks need to be considered. The result for low(T) < i < high(T)
is proved first followed by that for i > high(T).

. . . _high(I' high(T high(T') . high(l') _ _high(T
When low(T) < ¢ < high(T), nloi(ﬁ)‘)h'.gh(r)ﬂni k(T = ;"¢ ( ), since, ;"¢ ) ¢ n,oj(;)‘),ligh(r).
high(T")

By definition, the set #, contains all the columns that have a nonzero element in row
i. Clearly, the nonzero elements from the row s required in completing the computations at

all the elements I; ; € L, low(T) < j < high(T'), are on columns in the set nf'igh(r).

To measure the size of the set n?igh(r), note that it is bounded by the number of vertices

ordered ahead of the vertex f and which are “connected” to vertex ¢. Using the recursive
nature of the nested dissection ordering it can be verified that in the case of constant degrce
grid graphs and when low(T') < ¢ < high(T), the size of the set n?'gh(r) is bounded by ¢ m,
where ¢ is a constant dependent both on the degree of the graph and on whether I' is a
horizontal or vertical sub-separator. If T is a horizontal m-vertex sub-separator then, for
a 5-point stencil, ¢ is equal to 7 and, for a 9-point stencil, ¢ is equal to 11. When T is a
vertical m-vertex sub-separator, the values of ¢ are 5 and 7, respectively. This completes

the proof when low(T') < i < high(T).

The case where ¢ > high(I') is considered next. As shown above, ||1}:"'gh(r)|| depends on the
size of the sub-separator to which the vertex ¢ belongs and hence, when i > high(T),

||n?'gh(r)|| can be much greater than O(m) where m is size of I'. However, when the i
computation of only those elements in row i that lie on columns low(I') through high(T') are

of concern, each of these computations consists of a product of a nonzero element in row ¢
and a nonzero element in one of the rows low(T') through kigh(T) in the column kigh(T) or :
in sume other column to the left of it. Thus, for thesc computations, only the columns that 1
have a nonzero element in row i and in row j, where low(T') < j < high(T'), are of interest.

The set ﬁf::?l('l;,)lligh(r) consists of all columns that have a nonzero element in at least one

of the rows low(T) through high(T'). Similarly, n:'_'.”h(r) consists of all the columns that

have a nonzeto element in row &. Clearly, the set i’::nz'(ll("‘;,)hl'gh(r) ﬂﬂ:".gh(r) consists of all the
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columns which contain aii the pairs of norzero elements that must be used in completing the
computations at all the elements I, ;, low(T') < j < high(T'). Thus, the nonzero elements
from row ¢, ¢ > high(T'), required in completing computations at all the elements I;; € L

such that low(T') < j < high(I'), are those elements in the row ¢ on the columns in the set
_high(1') kigh(T')
) N, .

given b_\' low(1'),high

To get a bound on the size of ﬁ,’:jg,(‘];),“.gh(r)n”:ugh(r)’ consider the m-vertex horizontal

sub separator I shown in Figure 6. It is surrounded by sub-separators Ty, I'y, I's, and I'y.
Supposc that low(Ly) <7 < high(Ty). The sct ﬂ{“;z?l(})'),“.gh([.)ﬂn?'gh(r) consists of columns
corresponding to vertices on T' or corresponding to those vertices ordered ahead of them
which are “connected™ to at least one vertex in I' and to the vertex corresponding to row 1.
Using the recursive nt?aring of the nested dissection scheme it can be shown that the number
of suck vertices is less than 7m. Thus, ||f]lho'5’(ll(j)),u-qh(r)ﬂn?'gh(r)ll < 7m, for low(l) <i <
high(I'y). The same bound is obtained when low(Ty) < i < high(Ty). If low(T3) <1 <
) . . . . _high(T' high(T
high(Ty) ot low(T3) < i < high(T3) then it can be verified tkat, ||nl(:3(£)')h'.gh(r) N M) <
3m. If T is vertical sub-separator the two bounds are 5m and 5m/2 respectively. |

3.5 A partitioning scheme with minimum data traffic

In this section a partitioning scheme for computing the factor of the sparse matrix A is
described. Suppose that an » x = matrix is to be factored using n°® processors, a < 1.
The vertices of the \/a x +/n grid graph corresponding to this matrix are ordered using
the nested dissection method described earlier. Assuming n = (2' ~1)2, the ordering results
in 1 levels of subgraphs and I — 1 levels of “4”-separators. If the original /n x /n grid
is considered to be on level 0, then on level i thcre are 2% level-i subgraphs each of size
(2'-* —1) x (2'~* = 1). Without loss of generality assume that o -l is an integer. Thus, in
the partitioning scheme described here, all the vertices on a level-al subgraph are assigned
to the same processor. In that scheme, initially each processor independently computes the
elements in the factor corresponding to a (2(1=2* — 1) x (2(!=*)}¥ _ 1) subgraph which are
separated from one another by the level-al separators. Once the elements in the columns
corresponding to the vertices on the level-(I — 1) through level-al separators are computed
locally, a processor p; combines with three other processors to compute the elements on the
columns of L corresponding to the vertices on the level-(al — 1) “4”-separator. The two
horizontal sub-separators are computed by two processors and the vertical sub-separator of
that level is computed by all four processors. The next lower level “+”-separator is computed
in parallel by sixteen processors from the four neighboring groups. This is continued until all
the vertices are eliminated. On each level of computation each group of processors computes
the elements of the factor independent of the other groups. The elimination of the vertices
on the vertical sub-separator of level-1 is computed in parallel by all processors. This
corresponds to factoring a /2 x /n dense matrix. The computations corresponding to the
level-i separator, i < a -1, are performed as follows. The computations corresponding to the
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vertices on level-(al — k) “+7-separator, 1 < k < a -1, are completed by p = 22k processors
working in parallel. Using all the available processors, the factorization corresponding to
the m x m triangnlar diagonal block is first completed. Then the processors are used to
compute the clements corresponding to the four off-diagonal blocks. For the first part, the
BLOCC factorization scheme described for the dense matrices is used. The m x m dense
diagonal block is partitioned into r2/2 — r/2 square blocks and r diagonal triangular blocks
cach of size m/r x m/r where p = r2/2+7/2, and each of these p partitions is assigned to a
unique processor. Each processor completes the compnutations corresponding to its partition
by accessing the required data from the shared memory. For the purpose of factoring, the
off-diagonal blocks are treated as if they were adjacent, and the resultant rectangular block
is partitioned into p sub-blocks each of size ¢ - m/\/p x m//p, where ¢ < 6 for a horizontal
sub-separator and ¢ < 4 for a vertical sub-separator. Again each partition is assigned to a
separate processor. This process is repeated on the next lower level “4”-separator. Thus,
in the assignment scheme described here, each processor is assigned a new subblock on each
level and the size of the subblock assigned to a processor varies from one level to the next.
Let this partitioning scheme be referred to as the sparse block ortented column Cholesky
factorization scheme or simply as the sparse BLOCC scheme. Note that the underlying
numeric algorithm is the column oriented Cholesky factorization.

Data traffic associated with an m-vertex sub-separator

The sparse BLOCC scheme, described above, may be considered as a sequence of steps, each
step corresponding to the elimination of vertices on the “+4”-separators of some level. Ini-
tially, a single processor computes all the non-zero elements corresponding to a “+”-separator
in the factor. As the computation proceeds, more than one processor work together to com-
pute the elements corresponding to a “+”-separator. On any such step, first the non-zero
clements in the columns corresponding to the horizontal sub-separators are computed and
then those in the columns corresponding to the vertical part are computed. Here we analyze
the data traffic associated with any one step, on which p processors combine together to
compute the elements corresponding to a sub-sepuarator.

By Lemma 3, for any sub-separator I' there ate at most five non-zero blocks in the columns
corresponding to the vertices on I'. The number of non-zero blocks is five when T' is enclosed
within a rectangular box formed by the sub-separators with vertices that are ordered after
those on T (see Figure 6). The following lemma gives a bound on the data traffic associated
with computing the elements in the columns corresponding to such sub-separators. Not all
sub-separators are enclosed by such rectangular boxes. In such cases there are less elements
to be computed and consequently there is less data traffic. For the sake of simplicity of the
analysis, it is assumed that no element of the factor needed in the computation of the five
non-zero blocks is initially in the local memory of any of the  processors. Thus, the data
traffic given below is a conservative estimate.
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Lemma 5 LetT be any m-verter sub-separator and p be the number of processors avaslable
for computing the elements of the factor tn all the non-zero blocks within the columns low(T)
through high(T). If T ts an m-verter horszontal sub-separator, then the associated data
traffic ie at most (33 + 11v/2)m? . VP If st 1s a vertical sub-separator, then the data traffic

te at most (28 + 8v2)m?. V7

Proof: Let T be an m-vertex horizontal sub-separator that is enclosed completely within
a rectangular box formed by the sub-separators whose vertices are eliminated after the
vertices of T'. Such a sub-separator has the worst case communication requirements among
all the m-vertex sub-separators.

First, consider the data traffic associated with computing the elements of the factor in the
triangular diagonal block using p = r2/2 + r/2 processors. Each of the sub-blocks requires
nonzero elements from at most 2m/r rows out of the m rows in the range low(I') through
high(T) of the factor. No other information is necded. From the proof of Lemma 4,
each of these rows has at most 11m nonzeros. Thus the communication requiternent of
each partition is at most 11m - 2m//2p and the total communication requirement of the
trianguiar block is bounded above by 11y/2m? - N2

Now consider the data traffic associated with the off-diagonal blocks. Each partition is
of size 6m//p x m//p. Thus, each partition requires nonzero clements from 6m//p rows
which are below the row high(T') in the factor. From the proof of Lemma 4, each of these
rows has at most 7m nonzeros that are useful in completing the computations in any of the
partitions. Each partition also requires information from m/,/p rows from the region low(T)
through high(T'). Each of these rows has at most 11m nonzeros. Thus, the communication
requirement of each partition is at most 7m - 6m/,/p + 1lm - m/\/p = 53m?/,/p and the
total communication requitement of completing the computations at the off-diagonal blocks
using p processors is less than or equal to 53m2\/ﬁ.

Adding the communication costs cortesponding to the diagonal and the off-diagonal blocks
we get the total data traffic associated with T' to be less than or equal to (53 + 11\/5)7712-\/5.

A similar analysis can be used to compute the data traffic when I' is an m-vertex vertical
sub-separator and can be shown to be bounded above by (28 + 8v2)m? - \/p. 1

The total data traffic of the sparse BLOCC scheme

Applying the results from the above lemma, a bound is obtained on the total data traffic of
the sparse BLOCC scheme. First some notation is introduced. Let 7,(m,p, k) represent the
data traffic using p processors in completing the computations at all the nonzero elements
I;; € L in the columns corresponding to an m-vertex horizontal sub-separator that is
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surrounded by higher ordered vertices on k sides. Let 7,(m, p, k) tepresent the same for an
m vertex vertical sub-separator. From Lemma 5, 7,(m. p.4) is at most (53 + 11y/2)m? . VP
and 7. (m.p.4) is at most (28 +8\/§)m?-\/1_). Let rg(m’, p, k) represent the total data traffic,
using p processors, in completing the computations corresponding to all the sub-separators
within an m’-vertex sub-grid that is surrounded by higher ordered vertices on k sides. Note
that the gquantities 7, and 7, represent the data traffic corresponding to the vertices on a
horizontal and a vertical sub-separator, respectively, whereas 1, represents the data traffic
corresponding to the vertices on an entire sub-grid.

The following theorem gives an upper bound on the total data traffic in factoring the
matrix 4 associated with an n vertex 2.D regular grid graph using n® processors with the
scheduling scheme as described above.

Theorem 4 The total data traffic tn factoring the n x n sparse matrir 4, using n”

processors, 1 (' #2128y e ro(n. ™, 0) = O(n'*al?),

112 vertex vertical sub-separator

Proef: On an n'/? x n'/? regular grid there is an n
and two n'/2/2.vertex horizontal sub-separators (ignoring the additive constant -1). The
vertical sub-separator is not surrounded by any vertices that are ordered after the vertices
on the vertical sub-separator. Each of the two horizontal sub-separators are surrounded
by such vertices only on one side. These three sub-separators subdivide the n-vertex grid
graph into four sub-grids of size n'/?/2 x n'/2/2, each surrounded on two sides by higher
ordered vertices. Thus, the total data traffic in factoring the corresponding matrix A is

given by,
1 1 1 |
To(n.n®.0) = m(n'/?,n%,0) + m(;"”’, g1 +ar(n, 2n®,2).

A recursive expansion of the abouve expression contains data traffic terms for vertical sub-
separators of different sizes that are surrounded on zero sides, two sides, three sides (in two
different wavs), and on all four sides by higher ordered vertices. It also contains data traffic
expressions for horizontal sub-separators of different sizes surrounded in five different ways.
To keep the analysis simple, it is assumed that all the four sub-grids of size n'/2/2 x n'/2/2
are surrounded on all four sides. This simplification results in a conservative expression for
the data traffic, but affects only the constant terms in the bound. Thus,

T

1 1 1 1
o(n,n?,0) < r(n'?,n%,0) + 27;,(511.'/2. -n”,1) + 4T”(Zn’ -n?, 4).

2 4

Now,

1
—n",4).

1 1 1 1 1 1 1
T“’(Z"' -n",4) = r.,(Enl/"’, -n”,4) + 2rh(;-n'/2, -n%,4) + 41’,,(-1—611, T

4 4 8
From Lemma 5, it follows that,

134 + 8512
134 +85V2 pltel?,

1 1,
-n,-n",4) <
rg(4n n?,4) < T

4
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An analysis similar to that given in Lemma 5 yields
r.(n'/? n°,0) < 8\/5-11”"/2_

and \/_
1 1 22 +25V2
T},(—'Il]/?, -n%,1) < atoove nltel?,
2 2 8

Thus. we get
< 8+ 71V2 Jbal2

To(n. 2", 0) >

3.6 A lower bound on the data traffic complexity

In the following theorem, the communication bound of the sparse BLOCC scheme is shown,
by giving a lower bound proof, to be optimal in an order of magnitude sense.

Theorem 5 Under the condistion of uniform load distribution, the data traffic in factoring

the n x n sparse matriz A, using n® processors, a < 1, 1s Q(n'*e/?),

Proof: For a regular 2-D grid graph with n vertices, the separator size for nested dissection
ordering is n'/2 [12]. From Lemma 3, it follows that the factor L has an n'/2 x n'/2 dense
triangular diagonal block incorporated in it. From Theorem 2, the data traffic involved in
completing the computations associated with the elements of this dense triangular block,
under the condition of uniform load distribution using n® processors, is Q(n'*?/2). Since
the factorization of A cannot be completed without completing the factorization of this
dense block, the result follows. !

From Theorem 4 and Theorem 5, it is clear that the load assignment scheme described
here for factoring the n x n sparse matrix using n® processors is optimal in an order of
magnitude sense. Note that when n”, a > 1, processors are used, the data traffic bound
given in Theorem 3 holds.

4. Concluding remarks

In this paper we have analyzed the data dependencics in the Cholesky factorization of
dense and sparse symmetric, positive definite matrices. The model of computation assumes
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a multiprocessor system with a memory hierarchy. Based on this analysis it is shown that
under the condition of nniform load distribution the data traffic associated with factoring
ar n x 7 dense matrix is Q(n?"“/?) when n®, a < 2, processors are used. The same
is shown to be Q(n'*°/?), a < 1, for factoring an #n x n sparse matrix representing a
2-dimensiconal regular grid graph where the vertices are ordered using the nested dissection
ordering methods, Block based partitioning schemes are presented that asym~totically

achieve these bounds on the data traffic.

The sequential computation time for factoring the » X n sparse matrix A is 829n3/2/84 +
O(nlogn) [6]. As stated for the dense matrix case, the assumption here is that the compu-
tation cost of each step of the innermost loop is one and costs involved in the other steps are
ignored. Under the same assumption, it can be shown that the computation time for the
sparse BLOCC scheme is at most 2832%/2~2 /4 if n® processors are used. In 7], a parallel
scheme for factoring the matrix 4 on a multiprocessor system is given that is analogous
to the wrap around assignment scheme described in the Section 2.5 for dense matrices.
This scheme has the property of distributing the work evenly among the processors. The
computation time to factor the sparse matrix A on n® processors with the wrap around
scheme is at most 197n%/2~2 /4. However, the data traffic associated with that scheme is
less than or equal to 183n'*2/4. Note that the difference in the computation time with
the BLOCC scheme and with the wrap around assignment scheme is less than a factor of
two., The BLOCC scheme is able to compute the factor efficiently in the case of the sparse
matrices because the processors are now assigned blocks in a wrap around fashion which
tends to distribute the load evenly. On the other hand, the data traffic associated with the
BLOCC scheme is an order of magnitude less than that for the wrap around assignment
scheme. Morteover, in the former scheme, as many as n processors may be used before the
total data traffic reaches the maximum value of O(n®/?), whereas in the later scheme only
up to n'/? processors may be used efficiently. The impTic=*' s of the reduced data traffic
on the performance are as follows.

The sparse BLOCC scheme reduces the communication requirement to O(n'+2/?) by re-
moving the constraint of column-level indivisibility. Here the indivisible work unit is the

computation corresponding to a nonzero element in the factor. The reduction in the com-

munication requirements is brought about by improving the utilization of the data accessed

from shared memory by cach processor. Consider the factorization of an m X m dense

matrix. Let the date utilization of a data element accessed by a processor be defined as

the number of computations in which that element is used by that processor divided by

m. Since an element in the factor is needed in at most m computations, the maximum

utilization of any data accessed is one. Let the aggregate data utsirzation for a processor be

defined as the average utilization of the individual data elements accessed by that proces-

sor. In the BLOCC scheme applied to an m x m dense matrix, each processor accesses 1
at most 2m?/,/p elements from the shared memory and each element is used in at least
m/,/p computations. Thus, the utilization of each data accessed is at least 1/,/p and so is
the aggregate utilization of all the data accesses. On the other hand, with the column-level
work assignment scheme, cach processor accesses O(m?) elements from the shared memory.
Of these, only O(m/p) elements have a utilization of one and the data utilization for the
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remaining elements is 1/p which gives an aggregate data utilization of approximately 1/p.
Similar improvements in data utilizations are obtained in factoring a sparse matrix.

It should be noted that the square shape of the submatrix partitions produce the best
possible aggregate utilizations. For the algorithm considered here, the data dependencies
are such that rectangular and square partitions give rise to high data utilizations. Since
the square partitions have the minimum perimeter for a given area, the number of data
clements accessed (which is proportional to the perimeter of the partition) for a given
work load (which is proportional to the area enclosed), is also a minimum for the square
partitions.

An effect of the improvement in the aggregate utilization of data and the resulting reduction
in the communication requirements is the segregation of the accesses to the shared data.
Since the total data traffic in factoring an m X m dense matrix using p processors is
O(m? . /p), on an average cach processor accesses only O(m?/,/p) data. Note that the
total shared data is O(m?). Thus, on an average each element in the shared memory is
accessed by O(,/p) processors. The column-level assignment scheme, however, has a total
data traffic of O(m? - p) and thus, on an average each processor accesses O(m?) data or cn
an average cach element in the shared memory is accessed by O(p) processors. An obvious
implication of this observation is that for the scheme presented here, not only is the total
data traffic reduced but also the requests at individual shared addresses. This can have
considerable impact on the performance of the systems with a large number of processors.

As a final remark, note that the data traffic analysis for the sparse BLOCC scheme exploits
the fact that the underlying graph satisfies a \/n-separator theorem. Thus, similar schemes
may be developed for any class of graphs satisfying an f(n)-separator theorem [13]. In
such cases the data dependencies, the fill, and the computation time depend on f(n). In
[12] the fill and the bounds on the sequential computation time for various values of f(n)
are listed. Here we state the bounds on the corresponding data traffic when the systems
are computed using n” processors. The data traffic of factoring a matrix corresponding to
an n-vertex 3-dimensional regular grid using n® processors is O(n*/3t2/2), For that case
the computation time is O(r?~°). In general, the total data traffic for computing a factor
of a matrix corresponding to a d-dimensional grid is O(n??*+2/2), where ¢ = 1 — 1/d. The
computation cost is O(n3~?). For an n-vertex finite element graph! with no element having
more than k boundary vertices, the total data traffic in factoring the associated matrix is
O(k?-ni*2/2) The computation time is O(k® - n*2-2). All these quantities are optimal in
an order of magnitude sense.

YA finite element grapk is any graph formed from a planar embedding of a planar graph by adding all
possible diagonals to each face; i.e., there is a clique corresponding to each face of the embedded planar
graph.
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